Genotypic determinants of fluoroquinolone and macrolide resistance in Neisseria gonorrhoeae
Background:High rates of antimicrobial resistance (AMR) in Neisseria gonorrhoeae hinder effective treatment, but molecular AMR diagnostics may help address the challenge. This study aimed to appraise the literature for resistance-associated genotypic markers linked to fluoroquinolones and macrolides, to identify and review their use in diagnostics.
Methods: Medline and EMBASE databases were searched and data pooled to evaluate associations between genotype and phenotypic resistance. The minimum inhibitory concentration (MIC) cut-offs were ≤ 0.06 mg L-1 for non-resistance to ciprofloxacin and ≤ 0.5 mg L-1 for non-resistance to azithromycin.
Results: Diagnostic accuracy estimates were limited by data availability and reporting. It was found that: 1) S91 and D95 mutations in the GyrA protein independently predicted ciprofloxacin resistance and, used together, gave 98.6% (95% confidence interval (CI) 98.0-99.0%) sensitivity and 91.4% (95%CI 88.6-93.7%) specificity; 2) the number of 23S rRNA gene alleles with C2611T or A2059G mutations was highly correlated with azithromycin resistance, with mutation in any allele giving a sensitivity and specificity of 66.1% (95%CI 62.1-70.0%) and 98.9% (95%CI 97.5-99.5%) respectively. Estimated negative (NPV) and positive predictive values (PPV) for a 23S rRNA diagnostic were 98.6% (95%CI 96.8-99.4%) and 71.5% (95%CI 68.0-74.8%) respectively; 3) mutation at amino acid position G45 in the MtrR protein independently predicted azithromycin resistance; however, when combined with 23S rRNA, did not improve the PPV or NPV.
Conclusions: Viable candidates for markers of resistance detection for incorporation into diagnostics were demonstrated. Such tests may enhance antibiotic stewardship and treatment options.